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Design of Mode Transducers®

L. SOLYMARYt anp C. C. EAGLESFIELDY}

Summary—The propagation of the electromagnetic wave in a
gradual transducer is discussed. It is shown that the incident mode
and the geometry of the transducer determine the outgoing mode.
Inverting this theorem, a method is suggested for the design of the
transducer’s surface for cases in which the desired modes in the uni-
form waveguides are given.

The application of the method is illustrated in three examples.

I. INTRODUCTION

is often necessary to connect two uniform wave-

guides of different cross section by means of a non-
uniform waveguide (subsequently referred to as a trans-
ducer). The transducer can be used for two different
purposes: 1) to transform the same mode from one
waveguide into another waveguide of different size; and
2) to transform a certain mode of one waveguide into
a predetermined mode of the other waveguide.

The best example for the first type is a transducer
between two rectangular waveguides of different size.
The requirement is to transform efficiently the Hp
mode in a specified bandwidth. All the solutions natu-
rally employ a transducer whose cross section is every-
where rectangular. Similarly, the cross section of a
transducer between two circular waveguides of different
diameter is always circular. The problem in these cases
is how to vary the size of the cross section. This field is
well explored, and for certain cases optimum solutions
have been obtained.

]:[N the design of a microwave transmission system it

* Manuscript received by the PGMTT, July 6, 1959; revised
manuscript received, August 17, 1959.
+ Standard Telecommun. Labs. Ltd., Harlow, Essex, Eng,

The design of a transducer of the second type (gener-
ally called a mode transducer) is incomparably more
complicated, since the shape of the cross section is vary-
ing. Although mode transducers have been used since
the earliest days of microwave transmission, no syste-
matic procedure seems to have been developed for the
design of the required cross sections. The existing mode
transducers were designed by physical intuition.

The aim of the present paper is to suggest a syste-
matic design method. For the better understanding of
the basic phenomena, the properties of a given trans-
ducer are first analyzed. It is shown that the incident
mode and the surface of a sufficiently gradual trans-
ducer determine the outgoing mode. In the third section
the inverse problem is dealt with, 4.e., choosing the
surface of the transducer when the desired modes in
the uniform waveguides are given.

II. THE PROPAGATION OF THE ELECTROMAGNETIC
WAVE IN A SUFFICIENTLY GRADUAL TRANSDUCER

Let us consider the following arrangement of wave-
guides (see Fig. 1). The uniform waveguide 4 extends
from z= — « to 2=0, the transducer from z=0 to g=1L
and the uniform waveguide B from z=L to 3= .

WAVEGUIDE A WAVEGUIDE. B
— T 3
T —— e b
z=0 z=L

Fig. 1.
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The transducer has the following properties:

a) The equation of the surface is differentiable as a
function of 2.

b) A plane perpendicular to the z axis cuts the sur-
face in a single closed curve.

¢) The cross sections [denoted by S(z) | at z=0 and
g=1L are equal to those of the uniform waveguides 4
and B, respectively; i.e., S(0O) =54 and S(L) =S5.

The propagation of an electromagnetic wave in this
waveguide system can be studied with the aid of the
equivalent circuit concept.

As is known,’ a uniform waveguide can be repre-
sented by a set of uniform transmission lines, where each
transmission line corresponds to a mode. The imped-
ance and the propagation coefficient of the transmission
line can be expressed by the eigenfunctions (cross-sec-
tional wave functions) and eigenvalues (cutoff wave
numbers) of the uniform waveguide. A wave can sepa-
rately propagate on any of the transmission lines.

Propagation in a waveguide of gradually varying
cross section can also be represented by the same pic-
ture of a number of transmission lines,?® but now each
line has gradually varying characteristics and there is a
coupling between the lines. The coupling coefficients
and the characteristics of the transmission lines can be
expressed by the eigenfunctions and eigenvalues of a
uniform waveguide, whose cross section is identical
with that of the nonuniform waveguide at z. However,
if the transducer is sufficiently gradual, the coupling
between the transmission lines can be neglected.*

Thus, if a single mode enters the transducer from
waveguide 4 it will travel along one of the transmission
lines and emerge at the end as a single mode of wave-
guide B. However, at this stage of the argument it is not
at all clear which mode of waveguide B will be excited;
in order to discover this, the transducer has to be stud-
ied step by step. This can be done in principle (and in
practice numerically) by determining the eigenfunc-
tions and eigenvalues at a number of successive cross
sections of the transducer; thus, the continuity of the
transmission lines is determined in particular that of
the transmission line which is terminated in the incident
mode. The investigated cross sections must be spaced
sufficiently close, so that the continuity can be clearly
established.

If we write £.4 for the incident mode and refer to the
transmission line on which it travels as the mth trans-
mission line, and if ¥n(x, ¥, 2) is the corresponding

1 N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 3-7; 1948.

2S. A. Schelkunoff, “Conversion of Maxwell’s equations into
generalised telegraphist’s equations,” Bell Sys. Tech. J., vol. 34, pp.
995-1045; September, 1955.

3 G. Reiter, “Connection of Two Waveguides by a Waveguide of
Variable Cross-Section,” M.S. thesis in applied mathematics, Uni-
versity Eotvos Lorand, Budapest, Hungary; June, 1955.

4 L. Solymar, “Spurious mode generation in nonuniform wave-
guide,” IRE TrANS. oN MICROWAVE THEORY AND TECHNIQUES, vol.
MTT-7, pp. 379-383; July, 1959,
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gradually varying eigenfunction, then the requirements
on Y, are as follows:

1) Itis differentiable as a function of 2.

2) Yulx, v, 0) =¢,4, where ¢4 is the eigenfunction
of the £,4 mode in waveguide 4.

3) ¥ulx, v, L) =v.,%, where ¢,,® is the eigenfunction
of the excited mode in waveguide B (denoted by
tn®).

4) It satisfies the two-dimensional wave equation for
all values of z.

5) It satisfies the boundary conditions on the boun-
dary of every cross section.

We must note here that as a direct consequence of the
equivalent circuit of the transducer, the #»f mode
belongs to the same family (H or E) as the {,4 mode.

Summarizing the conclusions of this section, we state
that if the geometry of a sufficiently gradual transducer
and the incident mode are given, the outgoing mode
may be determined with the aid of the ¥, (x, ¥, 2) func-
tion.

However, the above treatment is not completely
general. In a few special cases, spurious modes will be
present in waveguide B even for a very gradual trans-
ducer. These exceptions are discussed in the Appendix.

III. OUTLINE OF THE DESIGN METHOD

We now invert the problem; instead of starting with
an existing transducer and deducing ¥..(x, ¥, 2), we lay
down the required {,4 and {,® modes, construct the
eigenfunction of the mth transmission line, and design
the transducer.

Knowing ¢,4 and ¢,,F it is always possible to con-
struct a function ¥, which satisfies conditions 1)—4).
(A particular method of this construction will be given
in a later section.) Y. becomes the eigenfunction of the
mth transmission line, if it satisfies condition 5) as well
as conditions 1)—4). Thus, the surface of the transducer
must be designed in such a way that the boundary
conditions for Y, are satisfied at every cross section. If
the transducer furthermore satisfies conditions a)—c),
then according to the analysis of the previous section,
the transducer transforms the ¢,4 mode of waveguide 4
into the desired ¢,,® mode of waveguide B.

The Equation of Possible Boundaries

If both #,4 and #,% belong to the family of the E
modes, then the equation of the possible boundaries is
given simply as follows:

Ym(x, ¥,5) = 0. (1)

If both ¢,4 and ¢,% are H modes, then the normal
derivative of the eigenfunction should wvanish at the
boundary. Denoting by f(x, ¥) =0 the equation of the
boundary curve at a given 2, it must satisfy the follow-
ing partial differential equation:

W O O 3 _

2
dx dx  dy dy @
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In a practical case it is generally sufficient to con-
struct the boundary curve by finding graphically the
orthogonal trajectories of the (¥, =constant) electric
lines.

Construction of Yu(x, ¥, 2)

The eigenfunction of the mth transmission line can be
constructed in an infinite number of ways. We shall
choose it for most of the subsequent examples in a
simple mathematical form as follows:

Yz, ¥, 2) = gl(z)‘l/mA + g2(z>¢mB (3)
where
g(0) =1, @(l) =0
£0) =0, g(l) =1 4)

and both g1(2) and g(2) are monotonic differentiable
functions. Y,—constructed in this way—obviously satis-
fies conditions 1)~-3). A simple (but not the only possi-
ble) way of meeting condition 4) is to make the eigen-
values (cutoff wave numbers) of the £,* and £,F modes
equal. This implies a certain relation between the di-
mensions of waveguides 4 and B which may not be
convenient. In practical devices, this can be overcome
by a preliminary taper in which the dimensions of
waveguide 4 (or B) are changed gradually, where the
shape is kept the same.

An interesting special case arises when the eigen-
function of the £, and #,? modes is the same, although
the cross sections of the uniform waveguides are dif-
ferent. Then an obvious choice for the eigenfunction of
the mth transmission line is

Y = Y = Yn®. (5)

Mode Purity

A disadvantage of the method is that we cannot per-
form the design for a specified mode purity. Because of
the coupling (neglected in the design) between the
transmission lines, spurious modes will always be pres-
ent. After the transducer has been constructed, the
power in the spurious modes is calculable?® although the
calculations are very laborious.

The mode purity will also depend on frequency, but
since the transducer is built up by gradual change the
purity of the desired mode cannot change violently with
frequency. However, when the frequency is increased,
the power in the spurious modes generally increases*?®
due to the decrease in the difference of the propagation
coefficients. Nevertheless, this increase in the power of
the spurious modes is small within the normally re-
quired bandwidth and is unlikely to affect the per-
formance.

5 B, Z. Katzenelenbaum, “On the Theory of Nonuniform Wave-
guides with Slowly Changing Parameters,” presented at the Congres
International Circuits et Antennes Hyperfrequences, Paris, France;

October, 1957,
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Examples

We shall illustrate the design method in three
examples.

The first example is a transducer between two uniform
waveguides having cross sections which are, respec-
tively, a section of a circle and a whole circle. The elec-
tric lines of the desired modes (both are H modes) are
shown in Figs. 2(a) and 2(c). (The density of the lines

s @ ©

(a)
Fig. 2.

in these and subsequent drawings is not related to the
intensity of the electric field). In this case, the eigen-
functions of both modes are the same. The simplest
choice for the eigenfunction of the mth transmission line
is in the form of (5). Then

Y = To (3.83 i) (6)

Yo
where

Jo=zero order Bessel function,
p=the radial polar coordinate, and
ro=the radius of the circle.

The boundary of an intermediate cross section must
be chosen in such a way that the boundary conditions
are fulfilled for ... It may be easily shown that the
normal derivative of (5) vanishes on the boundary of
any section of a circle of radius 7,. Hence, the cross
section of the transducer is chosen as a section of a
circle of radius 7, whose central angle is a monotonic
function of z satisfying the conditions «(0) =«o and
a(L) =2m.

This type of transducer is in common use.! The
example simply shows that, using this method, we
arrive at the same transducer.

We wish, however, to emphasize the fact that this is
not the only solution. If we choose a different ¥, we
arrive at a different transducer. Another possible choice
of ¥, |it obviously satisfies conditions 1)—4)] is, for
example,

U = To <3.83 7(%) )

where 7(3) is a slowly varying function of 2, »(0) =7»(L)
=7, An intermediate cross section of this transducer isa
section of a circle of radius 7(3).

8 A. C. Beck, “Measurement Techniques for Multimode Wave-
guides,” presented at the Symposium on Modern Advances in Micro:
wave Techniques, New York, N. Y.; November, 1954.
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A further choice of ¥, might result in a transducer in
which none of the intermediate cross sections is a sec-
tion of a circle, and which nevertheless produces an
arbitrarily pure mode at the output, provided that the
transducer is suthciently gradual.

There is no doubt that an engineer will prefer the
transducer designed in the first way (it is very likely
that for a given length that transducer produces the
purest mode), but it is worthwhile to note that, depend-
ing on the choice of ¥, an infinity of solutions exists.

Our second example is a mode transducer from the
Hy, mode of a rectangular waveguide into the He mode
of a circular waveguide. Mode transducers between
these two modes were designed a long time ago.” We
wish to suggest an alternative solution.

¥ is chosen in the form of (3). The ratio of the di-
ameter of the circle (denoted by d) to the width of the
rectangle (denoted by @) is d/a=1.22, determined from
the equality of the cutoff wave numbers. The height of
the rectangular waveguide is chosen to be equal to the
diameter of the circular waveguide. Thus, the eigen-
function of the mth transmission line may be expressed
as follows:

27 20
a9 = (5) cos—y + ge) o (7 VI y%) ®

where %, v, 3 are Cartesian coordinates.

In this case, the intermediate cross sections of the
transducer cannot be determined by simple considera-
tions. Either a numerical solution of the differential
equation (2) is necessary, or the following graphical
method can be used.

The Y, =constant curves representing the lines of
electric intensity are plotted in Fig. 3 for given values of
21(2) and g:(2). A possible boundary intersects perpen-
dicularly these electric lines. A further consideration is

" that the resulting surface between the prescribed cross
sections should be a smooth one. Taking account of
these requirements, Fig. 4 shows four cross sections
(initial, two intermediate, and final) of the transducer
designed. One can see from the changing picture of the
electric lines how the Hge: mode of the rectangular wave-
guide is transformed into the Hy mode of the circular
waveguide.®

Let us choose for the third example a mode trans-
ducer, which—although it has no practical importance
at the moment—illustrates how powerful the method is.

7 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” McGraw-Hill Book Co., Inc., New York,
N. Y., p. 340; 1948.

8 A transducer of this type has been constructed and tested by
Dr. Y. Klinger. It is 3 inches long, § inch diameter at the circular end.
Preliminary measurements at the wavelength 9 mm indicate a power
level in the desired Hy circular mode of about 95 per cent.
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Fig. 3—The ¢, =constant curves, gi(z)=0.246, g(z)=0.8.

The cross sections of the two uniform waveguides
(rectangle and isosceles right-angled triangle) to be
connected and the electric lines of the desired modes
may be seen in Figs. 5(a) and 5(e). The mode in the
triangular waveguide is the same as an Hy; mode in a
square waveguide.

In this case— in our opinion—intuition fails and the
cross sections of the transducer cannot be guessed,
while the application of the proposed design method
leads to a direct result.

The height of the rectangle (denoted by b) is chosen
to be equal to the sides of the triangle. The equality of
the eigenvalues is assumed by the choice w=5//2,
where w is the width of the rectangle. Constructing the
eigenfunction of the mth transmission line in the same
way as before, we obtain '

_ ™y T Ty
Un(x, v, 2) = g1(z) cos - + g2(2) cos 5 cos -

-9

Three intermediate cross sections of the transducer
may be seen in Figs. 5(b), (c), and (d). Having seen
these figures, one can imagine how the transducer
works; 1.e., the application of the method helps to build
up a deeper physical insight.

IV. CoxcrLusioN

It has been shown that for a gradual transducer the
outgoing mode £,Z can be determined from the incident
mode f,# (exceptions are treated in the Appendix). The
gradually changing field configuration in the transducer
is represented by an appropriately chosen function, the
eigenfunction of the mth transmission line. When this
theorem is inverted, the eigenfunction of the mth trans-
mission line is determined from the incident and out-
going modes, and with its aid the surface of the trans-
ducer is also determined.
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o

d

(d)

Fig. 4—Four cross-sections of a transducer from the HF mode to the
H% mode. (a) gu(z)=1, g«3)=0; (b) a(2)=0, 739 2:(z)=04;
(c) gi(z)=0.246, ga(z)=0.8; (d) &1(2) =0, ga(z)=1.

(a) (b)

i e e e i e o ey

(d)

Fig. 5—Five cross-sections of a transducer from the HR mode to the
HS mode, (a) £()=1, g2(5)=0; (b) @()=0.6, gax)=0.4; (c)
B(2)=0.37, s =0.63} () £(5)=02, ga)=08; (c) £i(s) =0,

22(z) =1.

Three examples have been worked out to illustrate
the design procedure. The electric lines in intermediate
cross sections are plotted; these show how the trans-
ducer works.

The paper presents a systematic approach to the
design of mode transducers, but certainly leaves many
questions unanswered, a few of which are listed here.
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1) In choosing a ¥m, does a transducer exist between
the required cross sections of the uniform wave-
guides for which ¥, is the eigenfunction of the
mth transmission line?

2) Which is the best choice of ¥,,?

3) When choosing ¥, in the form (3), what is the best
choice of g1(z) and g:(2)?

The answers to these questions do not seem to be simple
ones, but there is no reason to suppose that the optimum
design (in one or other sense) of mode transducers is
prohibitive,

APPENDIX

There are two types of cases when the conclusions of
Section I are not valid. Both are consequences of
degeneracy.

1) If a mode at a certain cross section of the trans-
ducer can be represented as the superposition of two
modes which have the same cutoff wave numbers, then,
because of a change in the boundary, the two compo-
nents might separate (in the equivalent circuit this
means that a transmission line is split into two). This
may happen, for example, with a (not circularly sym-
metrical) mode in a circular pipe. If the circular wave-
guide is deformed into an elliptical waveguide, and the
deformation does not take place along one of the axes of
symmetry, then two separate modes with different
velocities will propagate in the elliptical waveguide.®

2) If in the equivalent circuit of the transducer there

exists another transmission line whose cutoffi wave
number agrees with that of the mth transmission line
for every value of 2z, and these two transmission lines
are coupled, then this coupling can never be neglected.
The power is fluctuating between these two transmission
lines.! This happens, for example, in a bent circular
waveguide, where the Hy and E; modes (each repre-
senting a transmission line) have the same cutoff wave
n’umber and are coupled through the boundary.
.+ It is unlikely that in the design of a mode transducer
e1ther of these cases will arise. Nevertheless, it must be
borne in mind that these effects can cause the failure of
the method.

ACKNOWLEDGMENT

The authors wish to thank L. Lewin, Dr. Y. Klinger,
and Dr. A. E. Karbowiak for many interesting discus-
sions. Acknowledgment is also made to Standard Tele-
communication Laboratories for permission to publish
the paper.

? L. J. Chu, “Electromagnetic waves in elliptic hollow pipes of
metal ”J. Aj)pl Phys., vol. 9; September, 1938.
uS E, Miller, “Coupled wave theory and waveguide apphca
tions,” Bell Sys. Téch. J., vol. 33, pp. 661-719; May, 1954.




